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Irreducible cyclic codes are one of the largest and most powerful known classes
of block codes. For example, the celebrated Golay code now being studied for use
on the Mariner Jupiter-Saturn Mission is an irreducible cyclic code. This article
presents techniques for computing the weight enumerators of a large subclass of

irreducible cyclic codes.

l. Introduction

Irreducible cyclic codes are binary and nonbinary block
codes whose encoders are linear feedback shift registers,
such that the polynomial that represents the feedback
logic is irreducible. Irreducible cyclic codes have proved
to be among the most useful block codes: the (32, 6) first-
order binary Reed-Muller code currently in use on
Mariner flight projects and the (24, 12) binary Golay code
which has been proposed for a Mariner Jupiter/Saturn
1977 (M]S77) concatenated coding system are both (essen-
tially) irreducible cyclic codes. Nonbinary irreducible
cyclic codes could be used to conserve bandwidth for low-
rate, deep-space telemetry.

It is the object of this article to provide techniques for
computing the weight enumerators of a large class of
irreducible cyclic codes. The weight enumerator of a block
code of length n is the polynomial

A@Z)= 3 AZ

where A; denotes the number of words of weight i in the
code. The enumerator A (Z) provides valuable information
about the performance of the code, and is needed to com-
pute the error probability associated with proposed de-
coding algorithms.
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The results of this paper enable one to compute the
weight enumerator of all (n, k) p-ary irreducible codes for
which the integer N = (p* — 1)/n is a prime congruent to
3 (mod 4) for which p has order (N — 1)/2.

Il. Preliminaries

Let p be a prime, g = p¥, F, the finite field with q ele-
ments and T (§) = £ -+ & + --- + £%7 the trace of F,/F,.
If n divides ¢ — 1 and if 4 is a primitive n-th root of unity
in Fy, the set C of n-tuples

c(§) = (T (&, T0), -, T(§"Y)), ¢EinF,
in a vector space over F, that is closed under the cyclic
permutation S: (v, 0, * * * V1) (U3, * * * ,Vn1,0g). C
is called an (n, k) irreducible cyclic code over F,. {Cyclic
because it is S-invariant and irreducible because no sub-
space of C is S-invariant).

Let N be a positive integer not divisible by p and let
k = ordy (p), i.e., k is the least positive integer such that
p*=1modulo N. Associate with N and p the sequence of
(fm, km) irreducible cyclic codes with n,, = (p*™ — 1)/N.
R. ]J. McEliece and H. Rumsey (Ref. 1) have shown that
the calculation of the weight distributions for this whole
sequence of codes reduces to a single calculation (essen-
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tially that of calculating the weight distribution for the
case m = 1). Explicitly, they show that we want to deter-
mine the polynomial

HO ()= H@ = 3 nx (1)

where the numbers 7; are defined as follows: let ¥ be a
primitive root of F, such that ¥¥ = ¢ (thus nN = p* — 1),
let £ = exp (2=i/p) and let € (£) = 7@, then

m=a@) =S e(w o) =S @) (@)
Thus -
HEx= 3

O:tozqu

x1P@ ¢ (g) (modulo x¥ — 1) (3)

where if ¢ = ¥ ind («) = i.

Baumert and McEliece (Ref. 2) have determined this
polynomial in many of the simpler cases. In particular,
when k = ¢ (N)/2 they indicate methods that can be used
to solve the problem (at least for those cases with
(p* — 1)/(p ~ 1)=0modulo N, as it always is for p = 2).
Here, when N is a prime number of the form 4¢ + 1 the
code weight distributions are particularly nice. These are
all contained in Theorem 6 (Ref. 2). When N is a prime of
the form 4¢ + 3, things are a bit more difficult. In this note
we establish a general formula for H (x) that covers all
such primes N = 4t + 3 with the single exception N = 3.
Furthermore, the analogous polynomials H (x) are also
determined as well as the associated code weight distribu-
tions for the whole sequence of (n,, km) irreducible cyclic
codes. To accomplish this we make use of the rule (Ref. 1):

—H"(x)=(—H x))" (mod x¥ — 1) (4)

l1l. Statement and Proof of the Results

Let 8 = exp (2xij/N), B8 #1, then it is a classical result
that

H (B)H™ (B) = q = p™ (5)
where the bar denotes complex conjugation, Furthermore,
Hm™ (1) = —1 (6)

(proofs can be found in Ref. 2 as well as many other
places). Since N is a prime number it follows that the
™ (ie., H™ (x)) can easily be determined from the
coefficients @, in

Hm™ (B)=ay+a,f+ - +ay,p"? (7)

where, for definiteness, we fix 8 = exp (2xi/N).
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Equation (5) shows that it is useful to know the highest
power of p that divides H (B); let this be p®. Stickelberger
(Ref. 3) provides us with a way of determining a. Let

t =1, +2.p+ - be the expansion of ¢ in the base p
and let w, (f) =t, +#, + - - - . Then, Stickelberger tells
us that

(p — 1) @ = min {w, (jn): 1 =j < N where (j, N) = 1)
8)
Lemma (McEliece and Welch):

Let N and p be prime numbers, N = 4¢ + 3 and
34N p. Let k=ordy(p) = (N —1)/2 and let p* be
the highest power of p that divides H (8), 8 = exp (2=i/N).
Then

a=w,(n)/(p~1)=3ry/N (9)
where the 7; are the quadratic residues of N.

Proof:
Note first that r=pjmodulo N implies that w, (rn) =

w, (jn). For

m=jotpp+ - +fHap (10)

pin=0-+jop+ - + fra P + jfi pF

=fi1tfop+ - + freptmodulonN (= p* — 1)

But pjn =rnmodulonN as well, and since both of these
are reduced modulo nN they must be equal. So w, (rn) =
w, (pjn) = w, (jn) as asserted and

m=jr,+fp+ - F o pt? (11)

In the case at hand p generates the quadratic residues
modulo N and —1 is a quadratic nonresidue of N. So
only j = =1 need be considered in Eq. (8). We wish
to show that w,(n)=w,(—n). Let r;==p'moduloN

(i=0,1, - - - ,k—1) and let s;= —r; modulo N. Then,
it follows from Egs. (10) and (11) that, using j = 1,

"En =w,,(n)(1 +p+ e +p_1)
= w, (n)(p¥—1)/(p — 1) (12)
and similarly

n2s; = w,(—n)(P*—1)/(p— 1)
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So
wy(n) < wp(—n) if < Tsi

But, for primes N = 4¢ + 3, this is a famous result of
Gauss (see Weyl, Ref. 4). So

a=w,(n)/(p—1)=3Zr/N
as was to be proved.

Theorem:

Let N and p be prime numbers, N = 4¢+ 3 and
3£N=£p. Let k=ordy(p) = (N —1)/2, a = w, (n)/(p
— 1) and 8 = exp (2xi/N). Then for each integer m =1,
there exist unique positive integers ¢, d,, prime to p,
which satisfy the diophantine equation

¢k + Nd3, = 4pm -2 (13)
and
wazim%%+%zmdﬁ> (14)

where i runs over the quadratic residues modulo N. Fur-
ther, the integers 7™ are given by:

=p™ e, (N —1) — 2

(m) —

Mo oON
+=p" (dy N ~ Cp) — 2
o = e (15)

om — TP (An N + cn) +2
e 2N

'zmlcll this determines H ™ (x) completely, since (% = »{™
all @),

Proof:

Since N > 3, we have k > 1 and so (p — 1,N) = 1. By
the Corollary of Theorem 2 (Ref. 2) it follows that H ()
is an algebraic integer of Q (8); in fact, an integer of its
unique quadratic subfield Q (Y —N). (Q denotes the field
of rational integers here.) Now, every algebraic integer
of Q(V —N) has a unique representation in the form
(¢ + d\ —N)/2 where c, d are rational integers and c=d
modulo 2. Conversely, every such expression is an alge-
braic integer of Q (Y —N). Let « = H (B)/p® with a de-
fined by Eq. (9) above. Then,

4ad = c* + Ndz = 4pp-2 (16)
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and a can be determined from among the solutions of this
diophantine equation.

As a first step towards determining «, note that p divides
a if and only if p divides ¢ and p divides d. This is trivial
except for p = 2, where the assumption c, d even requires
special handling. Since aa is the norm of an algebraic in-
teger it must be a rational integer. So k — 2¢=0. But k is
odd, so k — 2a=1. Furthermore, p generates the quad-
ratic residues of N. In particular then, p is a quadratic
residue of N. If p = 2, quadratic reciprocity tells us that
N = —1 modulo 8. So for p = 2, with ¢, d even, we find
in examining Eq. (16) that ¢2=d? modulo 8. Thus c=d
modulo 4 and 2 does indeed divide « as asserted.

Since p* was the highest power of p dividing H (8),
among the solution pairs ¢, d of Eq. (16) we are only con-
cerned with those c,d not divisible by p. Consider the
prime ideal factorization of the principal ideal generated
by p in Q (Y —N). Here (p) = PQ, where P, Q are com-
plex conjugate prime ideals (i.e, Q =P). So if y=
(e + fV —N)/2 with e,f solutions of Eq. (16) and e,f
prime to p, it follows that the ideal (y) can only be P*-**
or Q%22 Thus y or y generates the same ideal that « does.
Say (y) = («); this implies that y = ua, where u is a unit
of the field Q (V —N). But, for N > 3, this field has only

=1 as units. So there are only 4 possibilities for «:

a:i<zs'gv_~—ﬂ)

The =+ sign for d corresponds to the choice between «
and « which is of no consequence, as it merely reflects the
ambiguity between H (8) and H (B) and does not affect
the answer materially. So we may stipulate without loss,
that ¢ and d are the unique positive integers, prime to p,
that satisfy Eq. (16) and that « = = (¢ + dV —N)/2. The
remaining + ambiguity is critical and shows up in the for-
mulas for the 5;s. Fortunately, the requirement that all
the »;’s must be rational integers always resolves this
final ambiguity.

So we have determined that

H(B)==+p

. c+dV—N fectd+2dTpi
( 2 >:i”< 2 )

where i runs over the quadratic residues modulo N, as
follows from Gauss’ representation of Y —N in the field
Q(B). This, together with H (1) = —1, suffices to deter-
mine the »; as given in Eq. (15); the theorem is proved
form = 1.
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With m > 1, the above reasoning together with Con-
gruence (4) taken at x = 3, shows that p™ is the highest
power of p dividing H™ (8). So the argument above
determines H™ (B) exactly as indicated in Eqs. (13), (14),
and (15).

Recalling the definition, Eq. (2), of the 5; and the defini-
tion of a code word c (£) in one of these irreducible cyclic
codes, it is clear that the »;’s determine the distribution of
the elements of F, amongst the codewords of C. Thus:

Theorem:

Let N and p be prime numbers, N = 4t + 3 and
34AN=£p. Let k=ordy(p) =(N—1)/2, let a=
w,(n)/(p — 1), let g = p™, and let ¢y, d,, be the unique
positive integers prime to p that satisfy the diophantine
equation ¢, + Nd2, = 4p™*22_ Then there are three dis-
tributions of elements of F, that occur in the nonzero
codewords of the associated (n,, km) irreducible cyclic
code: (caution if m =1 and k=£ord,p this code is de-
generate in that some codewords are repeated).

Class 0 (containing n,, codewords):

_29—-2px(p—-1)p™cn(N—1)
2pN

N,

_29xp™en(N 1)

N 2pN

i=1,---,p—1

Class 1 (containing n,, (N — 1)/2 codewords):

_29-2px(p—1p™(dnN —cn)

Class —1 (containing n,, (N — 1)/2 codewords):
_2q—=2px(p—1)p™(dnN + cw)

2pN
_2qxp™(duN +cp)
- 2pN

Here N, is the number of times the element i of F, appears
in the codeword.

N,

N,

i=1---,p—1

IV. Some Examples

Example I: N=7, p=2 k=3 n=a=c=d=1
This code is degenerate and its 7 (supposed nonzero) code-
words are 1,1,1,1,0,0,0. Nevertheless our formulas are
valid. They give 7, =, = —1, 7., = +1;, H(x) =
—1—x—x%+ %% — x* + 2% + x%. Class 0 contains 1 code-
word (N, =0, N, =1). Class 1 contains 3 codewords
(N, =0, N, = 1). Class —1 contains 3 codewords (N, = 1,
N, =0.

It can be shown that these codes are degenerate only
when m =1 (and not always then). So let us consider
m=2 Here N=T, p=2 mk=6,n=9 a=d, =1,
¢; = 3. Equation (15) yields »® =5, 9® =1, p®» = -3
so H® (x) =5 + x + x2 + x* — 3(x® + x5 + x%). Thus
there are 9 codewords (N, =7, N, =2}, 27 codewords
(No =5, N, = 4) and 27 codewords (N, =3, N, =6).

Example 2: N=11, p=3, k=5 n=22 a=2, ¢c=
d = 1. Equation (15) yields n, = 5, = 4, 5., = —5. Class 0
contains 22 codewords (N, =10, N, = N, =6). Class 1
contains 110 codewords (N, =10, N, =N, =86). Class
—1 contains 110 codewords (N, =4, N, = N, = 9),

Example 3: N =79, p =2, k=139, n = 6 958 934 353,
a=17,¢="17,d = 1. Thus », = 452945, », = 59729, ., =

N
’ 2pN ~—71343. Class 0 contains n codewords (N, = 3479693649,
N, = 3479240704). Class 1 contains 39n codewords (N, =
N = 29 = p™ (dwN — Cn) i1 p—1 3479497041, N, = 3479437312). Class —1 contains 39n
P 2pN =4 P codewords (N, = 3479431505, N, = 3479502848).
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